Altech Chemicals Limited advised that it has now commenced battery performance testing of graphite particles that have been coated with high purity alumina (HPA), using Altech's coating technology. On 22 December 2020, Altech announced the successful demonstration of its alumina coating technology to coat graphite particles typical of those used in anode applications within lithium-ion batteries (anode grade graphite), with a nano layer of high purity alumina (HPA). The demonstration showed that Altech's technology was able to deposit a uniform and consistent layer of alumina (approximately 2nm thick) onto anode grade graphite particles. The uniformity and consistency of an alumina layer on anode grade graphite is expected to be important to improve lithium-ion battery performance. Following the completion of the demonstration, Altech proceeded to produce a sufficient quantity of coated graphite to proceed to a first stage of battery test-work, which has now commenced. For Altech's tests, a batch of electrodes has been produced using non-coated standard anode grade graphite particles (the control), and a separate batch of electrodes was produced using the anode grade graphite that is coated with HPA, using Altech's technology. The initial tests, to battery industry standards, are an important first step to demonstrate the gains to be made in lithium-ion battery life using graphite particles that have been coated with HPA via the Altech process. The results of the testing program will be reported as they become available, and further tests are expected to follow. Background: HPA is commonly applied as a coating on the separator sheets used within a lithium-ion battery, as alumina coated separators improve battery performance, durability and overall safety. However, there is an evolving use for alumina within the anode component of the lithium-ion battery because of the positive impacts that alumina coated graphite particles have on battery life and performance. Lithium-ion battery anodes are typically composed of graphite. In a lithium-ion battery, lithium ion losses initially present as inactive layers that form during the very first battery charge cycle, the losses then compound with each subsequent battery usage cycle. Typically around 8% of lithium ions are lost during the very first battery charge cycle. This "first cycle capacity loss" or "first-cycle irreversibility" is a long recognised but as yet poorly resolved limitation that has plagued rechargeable lithium-ion batteries. Figure 4 shows the potential increase in battery life, if the first cycle capacity loss can be reduced or eliminated thereby allowing more lithium ions to participate in battery operation during its life-cycle. First cycle capacity loss in a lithium-ion battery is because of the consumption of lithium ions within the battery during the initial battery charging cycle. This forms a layer of material on the anode termed a "solid electrolyte interphase" (SEI). Currently the graphite particles used in lithium-ion battery anodes are uncoated, however manufacturers are now seeking to coat anode graphite particles with a very thin layer of alumina. Tests have demonstrated that alumina coated graphite particles have the potential to reduce first cycle capacity loss. In turn, this innovation can measurably increase battery energy retention, extend battery life and improve overall battery performance. Altech has launched development of a new product range called "Anode Grade APC01" and "Anode Grade ALC01". This product combined with Altech's particle coating technology is expected to improve Coulombic Efficiency (CE) (especially the CE in first cycle), cycling stability, high-rate performance and fast charging capability. Altech intends to focus on tailoring its high purity alumina into specialised products targeted at more efficient applications within various process technologies within the lithium-ion battery industry. The initiative also offers another potential avenue to secure a portion of future HPA production at a predetermined floor price, which would support project financial close. Altech's proposed anode grade product range would be produced by Altech's already designed HPA plant in Johor, Malaysia. No new specialised equipment will be required, consequently it is not expected that there will be any material change in the estimated capital cost for the Johor HPA plant from the proposed production of the new products.