NEO Battery Materials Ltd. to provide details on NEO's innovation utilizing modified carbon nanotubes as a new material to manufacture long-lasting, low-cost and mechanically durable silicon anode active materials. CNTs are theoretically known to retain similar electrical conductivity to copper and have more than 100 times the strength of steel. In addition, conventional carbon fibers have been known to easily break at a 1% strain, but CNTs have displayed the ability to maintain its structural properties at a 15% stretching level. Due to this capability to endure mechanical stress, CNT can act as an effective damper for the volumetric expansion problem of silicon anodes during charging and discharging cycles. Additionally, the superior electrical conductivity of the material allows the performance of the anode to be maximized. Major battery manufacturers such as LG Chemical are actively considering CNT as an additive for the next-generation battery line and are aggressively targeting to increase the production of CNTs. NEO Modified CNT Nanocoating Technology: Despite the excellent electrical conductivity, when mixed with silicon particles, there has been difficulty maximizing the advantages of CNTs due to the lack of affinity between the two materials. NEO has thus secured the technology to functionalize the surface of CNTs and has confirmed that the surface-treated CNTs have exceptional affinity with the silicon particles. The modified CNTs can be applied as an effective material in NEO's silicon nanocoating technology. NEO's modified CNTs can have a new morphology, and this confirms that NEO's technology enables a nanometer-scale conformal coating on the whole silicon particle surfaces. Battery characteristic analysis confirms that the life span is drastically improved compared to conventional CNTs that are applied to micron-sized metallurgical silicon anodes. With NEO's single-step, one-pot solution process, a process for mass production is currently being designed for the modified CNTs.