Certara announced the launch of version 18 of its Simcyp® Population-based Simulator. Certara’s Simcyp Simulator is the most sophisticated platform for determining first-in-human dose selection, designing more efficient and effective clinical studies, evaluating and advancing new drug formulations, predicting drug-drug interactions (DDIs) and PK outcomes in numerous virtual clinical populations. These include vulnerable populations, such as pediatric patients, pregnant women, and patients with impaired organ function. Simcyp Simulator v18 advances include the following: New Tumor Models: It is believed that some of the most intractable oncology drug development challenges, such as improving survival rates for ovarian and pancreatic cancer sufferers, are due to the fact that the drug is not successfully reaching the target site in the tumor. Anticancer drugs’ capacity to treat solid tumors depends upon their plasma PK and their ability to reach their pharmacological target in the malignant tumor. Version 18 of the Simcyp Simulator helps to quantify how much drug is getting to the target site within the tumor. The Simulator’s permeability limited tumor models now combine knowledge of the tumor composition with the drug’s physicochemical properties to simulate the distribution of small molecule drugs or biologics. These drug distribution models can also be combined with other tumor growth models, allowing a drug’s concentration in the tumor and the resulting tumor growth or inhibition to be factored in. The Simcyp Simulator can model the impact of a single drug or a combination therapy on the tumor. It can also simulate target-mediated drug disposition in tumor for biologics. The Simcyp Simulator contains 19 virtual populations for simulating drug performance via bridging, including a cancer patient population that has been leveraged for numerous drug programs. Enhanced ADAM Model to Predict Back-conversion of Metabolites in the Gut Lumen: In some cases, the drug metabolite can be converted back to the parent drug in the gut lumen. Therefore, it is important to consider the kinetics of both parent drugs and their metabolites – which could be DDI victims or perpetrators – when evaluating safety risk during drug development. The Simcyp Simulator’s Advanced Dissolution, Absorption and Metabolism (ADAM) model, which simulates drug disposition in the gut, has been enhanced to simulate back-conversion of metabolites in the gut lumen.