10x Genomics, Inc. announced the publication of a study enabled by the company’s Chromium™ Single Cell 3’ Solution. This new technology provides robust single-cell expression measurements, allowing the discovery of gene expression dynamics and molecular profiling of individual cell types at scale. To demonstrate the technical performance and applications of the Chromium Single Cell 3’ Solution, the researchers collected transcriptome data from approximately 250,000 single cells across 29 samples. Results showed superior scalability and robustness of this system for single cell RNA-sequencing, with comparable sensitivity to existing methods. The system’s rapid cell encapsulation and high cell capture efficiency enabled analysis of precious clinical samples from patients with acute myeloid leukemia. Using the Chromium Single Cell 3’ Solution, researchers determined host and donor chimerism at single cell resolution and compared immune cell subpopulation changes in patients before and after transplant. Existing methods for single-cell RNA-sequencing face practical challenges when scaling to tens of thousands or more cells in throughput. The commercially available Chromium Single Cell 3’ Solution enables single cell RNA-sequencing at scale, with high cell capture efficiency and flexible throughput. Current plate-based approaches require time-consuming fluorescence-activated cell sorting (FACS) into many plates that must be processed separately. Microfluidics-based platforms utilize mechanical trapping of cells and are limited in their throughput and cell capture efficiency. Academic droplet-based techniques enable processing of tens of thousands of cells in a single experiment but are not efficient to implement, or robustly scale. The published data demonstrates the Chromium Single Cell 3’ Solution can address both of these shortcomings in a single assay, resulting in a more scalable and robust platform for single cell RNA-sequencing.